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In the model proposed it is assumed that intramolecular processes (fluctuation of energy) cor
responding to the Poisson process on the time scale occur in excited polyatomic molecules. On 
the scale of number of events (reorganizations, fluctuations), the probability of decomposition 
depends on the distance from the termination of the excitation process. This model enables the 
basic features of the lifetime distribution of selectively excited molecules to be derived. 

In connection with the application of techniques for the selective activation of 
polyatomic molecules (rR mUltiphoton excitations, single-photon overtone vibra
tional excitations), models of decomposition in which instantaneous randomization 
of the excitation energy into all the representative oscilIators is not a priori assumed 
have been gaining in importance. Model molecules with limited exchange (re
distribution, reorganization) of vibrational energy are referred to as non-RRK 
molecules and the corresponding unimolecular kinetic behaviour of such molecules, 
as non-RRK behaviour!. An observable consequence of the limited intramolecular 
energy redistribution in the coIIisionless region is a nonexponentia I time decrease 
in the number of non decomposed molecules2 ,3 and, in the case of a two-channel 
decomposition, nonexponential kinetics of formation of the decomposition frag
ments and their nonstatistical proportions during the reaction4 ,5. The importance 
of these models has also increased with the progress of femtochemistry techni
ques6 , 7, As it seems, in a near future it will become possible, at a rather sharply 
defined moment to create an assembly of molecules with a well-defined excitation 
energy stored at a site (bond) of the molecule, and to subsequently monitor their 
decomposition on a time scale of hundreds or even tens of femtoseconds. A question 
then arises as to how long the molecule keeps information on the initial localization 
of the excitation energy (on what time scale the molecular memory extinguishes)8, 

A stochastic model enabling us to describe the kinetics of decomposition of mole
cules possessing memory, excited selectively at a site which may be either rather 
distant from the reaction .coordinate or rather near to it, is suggested and discussed 
in this paper. 
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The Stochastic Model oj Decomposition 

As a result of anharmonic interactions, an excited molecule with a total vibrational 
energy e undergoes energy reorganizations ( fluctuations) into the various representa
tive oscillators; these processes playa crucial role in the decomposition 9 • The mole
cule decomposes if a random fluctuation brings about accumulation of energy ex
ceeding the threshold decomposition energy eo. In the simple model of intramolecular 
processes of the collision type suggested previously3, 1 0, these fluctuations are re
presented by a time series of random events of the Poisson type. The reorganizations 
themselves are virtually instantaneous, and the time between them is distributed with 
an exponential density. 

Let Pn be the probability that during the n-th reorganization, energy higher than 
eo accumulates in the reaction coordinate (0 < Pn < 1). The probability that the 

n-1 

molecule will decompose just during this reorganization is n (1 - Pi) Pn' The life-
1=1 

time of this molecule on the scale of number of events3 is n. If the reorganizations 
proceed as Poisson processes1 !, then the probability that n reorganizations will take 
place in the molecule within the time interval (0, t) is (vt)" exp (-vt)ln!, where v 
is the mean frequency of reorganizations; the probability that reorganization will 
take place within the interval (t, t + at), M ..... 0, is vat. Thus, the probability that 
the lifetime 't' of the molecule on the laboratory time scale is from t to t + M (the 
time origin t = 0 is identified with the moment of excitation) is 

Prob{t < 't' < t + at} =J(t)at = 
<Xl 11 

= L (vt)" exp (-vt) n (t - Pi) VPn+ 1 MIn! , (1) 
n=O i=O 

where J(t) is the lifetime probability density and Po is zero by definition (reaction 
products are not immediately formed by the excitation process). 

The statistical RRK model (v ..... (0)12.13 of unimolecular decomposition and its 
more recent modification (0 < v < (0)10.14.15 are equivalent to the assumption 
that p" = P where P is the stationary (microcanonical) probability of microstates 
corresponding to energy in the critical oscillator higher than eo. In the classical ap
proximationl2, P = (e - eo)S-lles-1, where s is the number of representative oscil
lators. The dependence of Pn on n expresses a gradual delocalization of energy, 
which is an effect that is considered plausibleI6 •17• As n increases, P .. approaches 
monotonically the stationary value P (the relaxation mechanism of energy flow, 
rather than the oscillation mechanism, is assumed)18. If, immediately after the exci
tation, the energy is localized in the reaction coordinate or in its vicinity, then PII 
decreases with increasing n, whereas if the energy is localized at a site distant from 
the reaction coordinate, then Pn increases with increasing n. A simple model of this 
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type is defined by the probabilities 

Pn = q 1 (0 < n ~ N) 

Pn = q 2 (n > N) , 
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(2a) 

(2b) 

where N is an integer parameter characterizing the relaxation time of extinction of 
the memory of the molecule. With regard to the assumed relaxation mechanism of 
energy flow, we can put q2 = p. For this model the molecule lifetime density can 
be derived from Eq. (1) in the form 

N-1 
J(t) = L (vttexp(-vt)(l- q1)n vq t/n! + 

n=O 

00 

+ [(1 - q1)/(1 - q2)Y L (vt)n exp (-vt) (1 - q2)" Vq2/n! . (3) 
n=N 

The Laplace transform of this density is 

..<l'{f(t)} = (1 - q1)N/(1 + Z/V)N (1 + Z/Vq2) + 
+ 1/(1 + Z/Vq1) - (1 - q1)N/(1 + Z/V)N (1 + Z/Vq1)' (4) 

where z is the transformation variable. The distribution moments can be readily 
derived from this transform. The mean lifetime of the molecule is 

(5) 

with the limiting values of N/v + 1/vq2 for q1 ~ 0, 1/vq1 for N ~ 00 and 1/vQ2 
for N = O. 

The dependence of Pn on n according to Eq. (2) represents, on the scale of number 
of events, a jump change in the probability of decomposition. Actually, the model 
might be improved by introducing some more complex dependence of Pn on n, such 
as Pn = Q1 exp (-,l1n) + Q2(1 - exp (-A2n)), A1, A2 > 0, or Pn = (Q1 + nA3Q2)/ 
j(nA3 + 1), A3 > 0, but the experimental data would hardly make it possible to 
distinguish such dependences from the dependence (2). 

DISCUSSION 

The density (3) is exponential for Q1 = Q2 (= p), which corresponds to the statistical 
RRK model with a decomposition rate constant k(e) = vp. Adopting this interpreta
tion of the microcanonical rate constant k(e) (which reminds us of the contro
versial19 Slater's interpretation20), we obtain values of v ~ 1013 _1014 S-1 from 
experimental data of the rates of unimolecular reactions21 ,22. For Q1 ~ Q2 (excita-
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tion at a site distant from the reaction coordinate), the density J(t) exhibits a pro
nounced maximum (for the particular case of ql = 0 see ref.3); for ql ~ q2 (excita
tion in the vicinity of the reaction coordinate) the density J(t) is inclined with respect 
to the exponential density and, to a crude approximation, corresponds to a super
position of the exponential functions vql exp (-Vqlt) and vq2(1 - ql)N exp . 
. [ -vqit - NJv)] (Fig. 1). 

The nonexponentiallifetime distribution is indicative of the occurrence of a tem
porary memory in the molecule; the shape of the distribution (position of the maxi
mum, changes in skewness) enables the relaxation time of memory extinction to 
be estimated (in this model it is approximately NJv). Experimental data of the rate 
of decomposition of chemically or photon activated excited polyatomic molecules 
indicate8 ,23-25 that the information about the site of location of the excitation 
energy is lost in several picoseconds, so that the expected N values are on the order 
of 102 (the energy flow velocity co introduced previouslyl0,13 corresponds to the 
quantity vJN in this model). The process of gradual loss of information, however, 
has not yet been disclosed by a direct experiment (suitable systems making such obser
vation possible have been devised recently by Reinhardt and Duneczky17). 

The density J(t) cannot be determined from the experimental data directly. Let 
us consider a dissociation reaction A ..... P + Q and assume that the excitation 
process produces, at time t = 0, an assembly of N A(O) molecules A with excitation 
energy & ± Ll& where Ll& is small. At a time t > 0 the system will contain N A(t) 
undissociated molecules A and Np(t) = NQ(t) = NA(O) - NA(t) molecules P (or Q) 
(single-channel decomposition and a negligible rate of deexcitation are assumed, so 
that N A(O) = N p( 00) = NQ( 00)). The experimentally accessible concentration of A 
(or p) and the density J(t) are interrelated through 

x 

(6) 

FIG. 1 

Molecular lifetime distribution according to 
Eq. (3). X = vt, Y = f(t)!vQ2; N = 50. 
Q2 = 10- 2 • Ql: 1 0, 2 10- 3 , 3 10- 2 , 4 
2.10- 2 
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The density f(t) can be derived from the variation of concentration of one of the 
decomposition products with time: 

(7) 

Implicit assumptions for this way of determination of f(t) are a sufficiently short 
excitation process, enabling the time origin to be well-defined, and a sufficiently 
narrowly defined excitation energy width. These conditions could be satisfied by 
the laser femtosecond technology6, 7 • 

The density f(t) is interrelated with the decomposition rate constant k(D) through 

k(e) = -dNA(t)/NA(t) dt = f(t)/S~ f(t) dt. (8) 

The probability that an excited molecule undecomposed at time t will decompose 
in the interval (t, t + dt) (the so-called infinitesimal transition probability) is k(e) dt. 
The constant k(e) is time independent if and only if f(t) is exponential density, the 
molecule behaves like a chaotic memoryless system, and the dissociation process 
obeys the exponential decomposition law. For ql * q2 the dependence of k(e) on t 

has a sigmoid shape with the limits vq I for t ---+ 0 and vq 2 for t ---+ CfJ and with the 
inflection point at t ~ N/v. 
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